

AYOOSH BANSAL, JAYATI SINGH, MICAELA VERUCCHI, MARCO CACCAMO AND LUI SHA

UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN TECHNICAL UNIVERSITY OF MUNICH UNIVERSITY OF MODENA AND REGGIO EMILIA

presented at MECO'2021 and CPSIoT'2021, Budva, Montenegro

www.embeddedcomputing.me

MECO

years outgrowing the science

		Detection	
		Exists	Does not Exist
Ground Truth	Exists	True Positive (TP)	False Negative (FN)
	Does not Exist	False Positive (FP)	True Negative

• The current metrics

- Precision = TP / (TP + FP) = TP / All Detected
- Recall = TP / (TP + FN) = TP / All Exists
 - × FN *i.e.*, not detecting obstacles that exist, safety issue

		Detection	
		Exists	Does not Exist
Ground Truth	Exists	True Positive (TP)	False Negative (FN)
	Does not Exist	False Positive (FP)	True Negative

State of the art

• Object Importance

- Ohn-Bar E, Trivedi MM. "Are all objects equal? Deep spatiotemporal importance prediction in driving videos."
 - × User annotated object importance
- Refaat KS, Ding K, Ponomareva N, Ross S. Agent prioritization for autonomous navigation.
 - × Agent prioritization by impact on planning

Neural Network based scene Risk Annotation

- Wang Y, Kato J. Collision risk rating of traffic scene from dashboard cameras.
- Feth P, Akram MN, Schuster R, Wasenmüller O. Dynamic Risk Assessment for Vehicles of Higher Automation Levels by Deep Learning.

State of the art

Object Importance Ohn-Bar E, Trivedi MM. "Are all objects equal? Deep spatio-

Approximate or subjective determinations not suitable for Safety Analysis Need an Objective Safety Performance Indicator

Assessment for Vehicles of Higher Automation Levels by Deep Learning.

Design Choices I

• Time Horizon

- For any risk analysis what time frame should be considered?
 - × We choose Time to Stop (TTS)
- Emergency stop acceptable default safety response [1].
- Time to stop includes
 - × reaction time of the AV
 - × physical conditions of the scene (safe deceleration)
- *i.e.,* more information about ground truth and AV system, more accurate the risk evaluation.

[1] Meder B, Fleischhut N, Krumnau NC, Waldmann MR. How should autonomous cars drive? A preference for defaults in moral judgments under risk and uncertainty.

Design Choices II

• IoU vs IoG

- o IoU : Intersection over Union
- IoG : Intersection over GroundTruth

- SuperSet existence detection is enough to avoid collision.
- Truncated and Occluded objects are also handled with this

Design Choices III

• Flexible Options

• TP determination

- × Class match
 - Classification provides additional information, but unclassified obstacles should also be avoided.
 - Class match is not used as a requirement for TP determination.
- × Depth
- × Volume IoG

o Sensor / System type

- × Vision
- × Lidar
- × Radar
- × Vision was primarily used in this work.

Methods/Approach

• Risk Ranked Recall

- R_1^3 : Recall for objects that pose an imminent risk of collision
- R_2^3 : Recall for objects that pose a potential risk of collision
- R_3^3 : All other objects in the environment.

Methods/Approach

• Imminent Collision

- Collisions that will happen without any corrective action
- Trajectories with current heading and velocity over TTS
- Check for any collision
- Such scenarios are not present in real world datasets

Methods/Approach

• Potential Collisions

- o Collisions that can potentially happen
- Existence Region E(t) [2]
 - Area where an object's center point may exist at time t
 - $\times \text{ Center} = x(0) + v(0)t$
 - × Area = $\frac{1}{2} a^{max} t^2$
 - $d_{min}(t)$ = Min distance between E(t)of objects at time t
 - *d_{crit}* = Max distance between center of objects where their edges still touch, for rectangles that's sum of half diagonals.
 - × Considers a_max for each object
- $d_{min}(t) < d_{crit} \rightarrow$ Potential Collision

• Object Detection DNN, Pretrained

- o Yolo v3, FasterRCNN, MaskRCNN
- o Input resolutions 320x320, 416x416, 608x608 pixels

• Waymo Open Dataset, 24 sequences, 10 Hz

- R_1^3 : o objects in GroundTruth
- R_2^3 : 952 objects in GroundTruth
- R_3^3 : 27021 objects in GroundTruth

Conclusions

- Existing metrics are incomplete
- Need for an objective safety performance indicator
- Risk Ranked Recall bridges the gap
- Additional information to existing metrics
- Future work will explore object detection system design and evaluation using the new metrics