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Key requirement of real-time (RT) systems. All tasks should finish execution before the deadline.

WCET < deadline.

Tasks in a sample 
autonomous pipeline. 
Adapted from Yurtsever, 
Ekim, et al. "A survey of 
autonomous driving: 
Common practices and 
emerging technologies.”
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HARD REAL-TIME SYSTEMS AND MULTI-CORE PROCESSORS

Porting legacy single-threaded RT apps Supporting new multi-threaded RT apps

Solution I. Deactivate all but one core.
✓ Easy to port.
✕ Expensive. 

Solution II. N-core processor ≡ N single 
core processors. Mancuso, Renato, et al. 
"WCET (m) estimation in multi-core 
systems using single core equivalence."

Challenges.
Multi-threaded applications rely on cache
coherence to ensure correctness.

Solutions.
How do we solve the complications 
introduced by coherence for RT tasks? 

Contribution 1.

Contribution 2.

How does cache coherence complicate 
WCET estimation for tasks?



A MOTIVATING MICROBENCHMARK

Hardware Setup. ARMv8-A Cortex-A53* 
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Software Setup. Average latency to 
acquire-release spinlock

while(__sync_lock_test_and_set(&lck,1)){};
__sync_lock_release (&lck)

*Refer to our paper for other results on a 14-core Intel Xeon E5-2658. Code available on https://gitlab.engr.illinois.edu/rtesl/inc-oc

Results*

Observation. The coherence overhead leads 
to a delay even greater than DRAM latency.

Why? Dirty Miss

https://gitlab.engr.illinois.edu/rtesl/inc-oc


DIRTY MISS IN CACHE COHERENCE

States in MSI Protocol
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1. Longer than L2 access latency.

2. Sometimes, longer than DRAM access 
latency. 



POSSIBLE SOLUTIONS

Solution I. Mark all accesses where dirty misses are 
a possibility as uncacheable.

Solution II. Software coherence only. 

Solution III. New coherence protocol. Hassan, 
Mohamed, et al. "Predictable cache coherence for 
multi-core real-time systems.” (PMSI)

Solution IV. Mark all accesses where dirty misses 
are a possibility as uncacheable up to the closest 
shared cache level of the sharers. 

✓ No changes Linux kernel and ARM ISA
✓ Supported by ARM processor hardware.
✕ Significantly worsens average execution time.

✓ No hardware changes.
✕ Software-programmer to maintain coherence.

✓ Transparent to legacy software.
✕ Worsens average execution time by 1.5x.
✕ Significant hardware extensions.

✓ < 50 lines diff in the Linux kernel 
✓ Supported by ARM ISA.
✓ 1% increase change in average execution time.
✓ Small hardware changes.



PROPOSED SOLUTION

Intuition. With generalized processor. Implementation
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Example I. Core 0 and Core 1 share data.
Example II. Core 0 and Core 2 share data.
Example III. Core 0 and Core 4 share data.
Example IV. Core 0 and Core 6 share data.

RT Application

Linux Kernel

ARM ISA

Hardware

Identify all shared variables.
Mark them with *cacheability
type flag (CACHE_FLAG) in
mmap(). 

Modify mmap() to include all 
cacheability type flags.

ARM v8-A supports the 
cacheability types.

Replicate ARM Cortex A53 
with hardware changes (TLB, 
cache controller) required in 
gem5 full-system mode.

buf = mmap(0, size, PROT_READ | PROT_WRITE, MAP_SHARED | CACHE_FLAG, fd, offset);*Command:



RESULTS: WORST-CASE ANALYSIS USING GEM5

Experiment II. Measure the lock acquire-release 
latency.

Experiment I. Concurrent write-requests from 4 
cores to the same address. INC-OC is cached in L2 
and not L1. The cache line is in M state in one core. 

Observations.
I. Process dirty miss 52% faster.
II. Complete 4 write requests 74% faster.

Observations.
I. Lock acquire-release 85% faster.



RESULTS: AVERAGE-CASE ANALYSIS USING GEM5

Experiment. 

Analysis of SPLASH2 Benchmark Suite. INC-OC is cached in 
L2 and not L1. All variables incurring possible dirty misses 
are identified and marked as INC-OC.

Observations.

I. Worse the average execution time a by maximum of 1%.
II. This is significantly better than PMSI[1]

[1] Hassan, Mohamed, et al. "Predictable cache coherence for multi-core real-time systems.”



CONCLUSION AND FUTURE WORK

Contributions Future work

I. Identify major causes of memory-
access time variability due to 
cache coherence.

II. Introduce mechanism to improve 
worst-case memory-request 
latency by avoiding coherence 
overheads with selective cache-
level bypassing.

Introduce compiler support.

I. Identify variables with possibilities of 
dirty misses through static analysis.

II. Mark these variables with the 
necessary cacheability type through 
static code-transformation.
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THANK YOU!
Questions?


