
Presented at MECO 2020 and CPSIoT 2020, Budva, Montenegro

Reconciling Predictability and
Coherent Caching

Ayoosh Bansal, Jayati Singh, Yifan Hao, Jen-Yang
Wen, Renato Mancuso, Marco Caccamo

Key requirement of real-time (RT) systems. All tasks should finish execution before the deadline.

WCET < deadline.

Tasks in a sample
autonomous pipeline.
Adapted from Yurtsever,
Ekim, et al. "A survey of
autonomous driving:
Common practices and
emerging technologies.”

Timeline

HARD REAL-TIME SYSTEMS

Perception

Sensors
Cameras,

LiDAR, IMU,
GPS

Local
Planner

Controller Actuation

Localization
Global

Planner

HARD REAL-TIME SYSTEMS AND MULTI-CORE PROCESSORS

Porting legacy single-threaded RT apps Supporting new multi-threaded RT apps

Solution I. Deactivate all but one core.
✓ Easy to port.
✕ Expensive.

Solution II. N-core processor ≡ N single
core processors. Mancuso, Renato, et al.
"WCET (m) estimation in multi-core
systems using single core equivalence."

Challenges.
Multi-threaded applications rely on cache
coherence to ensure correctness.

Solutions.
How do we solve the complications
introduced by coherence for RT tasks?

Contribution 1.

Contribution 2.

How does cache coherence complicate
WCET estimation for tasks?

A MOTIVATING MICROBENCHMARK

Hardware Setup. ARMv8-A Cortex-A53*

Core 0

L1

L2

DRAM

L1

Core 2

L1

Core 3

L1

Core 1

L1 Access: 3.4 ns

L2 Access: 16.6 ns

DRAM Access: 154 ns

Software Setup. Average latency to
acquire-release spinlock

while(__sync_lock_test_and_set(&lck,1)){};
__sync_lock_release (&lck)

*Refer to our paper for other results on a 14-core Intel Xeon E5-2658. Code available on https://gitlab.engr.illinois.edu/rtesl/inc-oc

Results*

Observation. The coherence overhead leads
to a delay even greater than DRAM latency.

Why? Dirty Miss

https://gitlab.engr.illinois.edu/rtesl/inc-oc

DIRTY MISS IN CACHE COHERENCE

States in MSI Protocol

Core 0

L1

L2

Shared

Modified

Invalid

Core 1

L1

Self LD

Other LD

Self ST

STSelf LD

Other LD

Other INV

Self ST

Self LD/ST

/ Self-
eviction

/ Self-evictionOther INV

Transitions in a dirty miss

Get
Exclusive

Other INV

Write-backData

LD Load
ST Store

INV Invalidate
Self (Other) Request from same (other) core

1. Longer than L2 access latency.

2. Sometimes, longer than DRAM access
latency.

POSSIBLE SOLUTIONS

Solution I. Mark all accesses where dirty misses are
a possibility as uncacheable.

Solution II. Software coherence only.

Solution III. New coherence protocol. Hassan,
Mohamed, et al. "Predictable cache coherence for
multi-core real-time systems.” (PMSI)

Solution IV. Mark all accesses where dirty misses
are a possibility as uncacheable up to the closest
shared cache level of the sharers.

✓ No changes Linux kernel and ARM ISA
✓ Supported by ARM processor hardware.
✕ Significantly worsens average execution time.

✓ No hardware changes.
✕ Software-programmer to maintain coherence.

✓ Transparent to legacy software.
✕ Worsens average execution time by 1.5x.
✕ Significant hardware extensions.

✓ < 50 lines diff in the Linux kernel
✓ Supported by ARM ISA.
✓ 1% increase change in average execution time.
✓ Small hardware changes.

PROPOSED SOLUTION

Intuition. With generalized processor. Implementation

Core 0

L1

L3

DRAM

L1

Core 2

L1

Core 3

L1

Core 1 Core 4

L1

L3

L1

Core 6

L1

Core 7

L1

Core 5

L2L2L2L2

Example I. Core 0 and Core 1 share data.
Example II. Core 0 and Core 2 share data.
Example III. Core 0 and Core 4 share data.
Example IV. Core 0 and Core 6 share data.

RT Application

Linux Kernel

ARM ISA

Hardware

Identify all shared variables.
Mark them with *cacheability
type flag (CACHE_FLAG) in
mmap().

Modify mmap() to include all
cacheability type flags.

ARM v8-A supports the
cacheability types.

Replicate ARM Cortex A53
with hardware changes (TLB,
cache controller) required in
gem5 full-system mode.

buf = mmap(0, size, PROT_READ | PROT_WRITE, MAP_SHARED | CACHE_FLAG, fd, offset);*Command:

RESULTS: WORST-CASE ANALYSIS USING GEM5

Experiment II. Measure the lock acquire-release
latency.

Experiment I. Concurrent write-requests from 4
cores to the same address. INC-OC is cached in L2
and not L1. The cache line is in M state in one core.

Observations.
I. Process dirty miss 52% faster.
II. Complete 4 write requests 74% faster.

Observations.
I. Lock acquire-release 85% faster.

RESULTS: AVERAGE-CASE ANALYSIS USING GEM5

Experiment.

Analysis of SPLASH2 Benchmark Suite. INC-OC is cached in
L2 and not L1. All variables incurring possible dirty misses
are identified and marked as INC-OC.

Observations.

I. Worse the average execution time a by maximum of 1%.
II. This is significantly better than PMSI[1]

[1] Hassan, Mohamed, et al. "Predictable cache coherence for multi-core real-time systems.”

CONCLUSION AND FUTURE WORK

Contributions Future work

I. Identify major causes of memory-
access time variability due to
cache coherence.

II. Introduce mechanism to improve
worst-case memory-request
latency by avoiding coherence
overheads with selective cache-
level bypassing.

Introduce compiler support.

I. Identify variables with possibilities of
dirty misses through static analysis.

II. Mark these variables with the
necessary cacheability type through
static code-transformation.

Presented at MECO 2020 and CPSIoT 2020, Budva, Montenegro

THANK YOU!
Questions?

